Kamera refleks lensa tunggal (bahasa Inggris: Single-lens reflex (SLR) camera) adalah kamera yang menggunakan sistem jajaran lensa jalur tunggal untuk melewatkan berkas cahaya menuju ke dua tempat, yaitu Focal Plane dan Viewfinder, sehingga memungkinkan fotografer untuk dapat melihat objek melalui kamera yang sama persis seperti hasil fotonya. Hal ini berbeda dengan kamera non-SLR, dimana pandangan yang terlihat di viewfinder bisa jadi berbeda dengan apa yang ditangkap di film, karena kamera jenis ini menggunakan jajaran lensa ganda, 1 untuk melewatkan berkas cahaya ke Viewfinder, dan jajaran lensa yang lain untuk melewatkan berkas cahaya ke Focal Plane.
Kamera SLR menggunakan pentaprisma yang ditempatkan di atas jalur optikal melalui lensa ke lempengan film. Cahaya yang masuk kemudian dipantulkan ke atas oleh kaca cermin pantul dan mengenai pentaprisma. Pentaprisma kemudian memantulkan cahaya beberapa kali hingga mengenai jendela bidik. Saat tombol dilepaskan, kaca membuka jalan bagi cahaya sehingga cahaya dapat langsung mengenai film.
Komponen Kamera SLR
Pembidik
Salah satu bagian yang penting pada kamera adalah pembidik (viewfinder). Ada dua sistem bidikan, yaitu:
- jendela bidik yang terpisah dari lensa (Viewfinder type)
- bidikan lewat lensa (Reflex type).
Kamera SLR, sesuai dengan namanya (Single Lens Reflex), menggunakan sistem bidikan jenis kedua. Mata fotografer melihat subjek melalui lensa, sehingga tidak terjadi parallax, yaitu keadaan dimana fotografer tidak melihat secara akurat indikasi keberadaan subjek melalui lensa sehingga ada bagian yang hilang ketika foto dicetak. Keadaan parallax ini pada dasarnya terjadi pada pemotretan sangat close up dengan menggunakan kamera viewfinder.
Jendela Bidik
Jendela bidik merupakan sebuah kaca yang di dalamnya tercantum banyak informasi dalam pemotretan. Jendela bidik memuat penemu jarak (range-finder), pilihan diafragma, shutter speed, dan pencahayaan (exposure).
Lensa
Dalam fotografi, lensa berfungsi untuk memokuskan cahaya hingga mampu membakar medium penangkap (film). Di bagian luar lensa biasanya terdapat tiga cincin, yaitu cincin panjang fokus (untuk lensa jenis variabel), cincin diafragma, dan cincin fokus.
Macam-macam lensa
- Lensa Standar. Lensa ini disebut juga lensa normal. Berukuran 50 mm dan memberikan karakter bidikan natural.
- Lensa Sudut-Lebar (Wide Angle Lens). Lensa jenis ini dapat digunakan untuk menangkap subjek yang luas dalam ruang sempit. Karakter lensa ini adalah membuat subjek lebih kecil daripada ukuran sebenarnya. Dengan menggunakan lensa jenis ini, di dalam ruangan kita dapat memotret lebih banyak orang yang berjejer jika dibandingkan dengan lensa standar. Semakin pendek jarak fokusnya, maka semakin lebar pandangannya. Ukuran lensa ini beragan mulai dari 17 mm, 24 mm, 28 mm, dan 35 mm.
- Lensa Fish Eye. Lensa fish eye adalah lensa wide angle dengan diameter 14 mm, 15 mm, dan 16 mm. Lensa ini memberikan pandangan 180 derajat. Gambar yang dihasilkan melengkung.
- Lensa Tele. Lensa tele merupakan kebalikan lensa wide angle. Fungsi lensa ini adalah untuk mendekatkan subjek, namun mempersempit sudut pandang. Yang termasuk lensa tele adalah lensa berukuran 70 mm ke atas. Karena sudut pandangannya sempit, lensa tele akan mengaburkan lapangan sekitarnya. Namun hal ini tidak menjadi masalah karena lensa tele memang digunakan untuk mendekatkan pandangan dan memfokuskan pada subjek tertentu.
- Lensa Zoom. Merupakan gabungan antara lensa standar, lensa wide angle, dan lesa tele. Ukuran lensa tidak fixed, misalnya 80-200 mm. Lensa ini cukup fleksibel dan memiliki range lensa yang cukup lebar. Oleh karena itu lensa zoom banyak digunakan, sebab pemakai tinggal memutar ukuran lensa sesuai dengan yang dibutuhkan.
- Lensa Makro. Lensa makro biasa digunakan untuk memotret benda yang kecil.
Fokus
Fokus adalah bagian yang mengatur jarak ketajaman lensa, sehingga gambar yang dihasilkan tidak berbayang..
Kecepatan rana
Kecepatan rana (shutter speed) artinya penutup (to shut = menutup). Pada waktu kita menekan tombol untuk memotret, terjadi pembukaan lensa sehingga cahaya masuk dan mengenai film. Pekerjaan shutter adalah membuka dan kemudian menutup lagi.
Kecepatan rana adalah kecepatan shutter membuka dan menutup kembali. Shutter speed dapat kita atur. Jika kita memilih 1/100, maka ia akan membuka selama 1/100 detik.
Skala shutter speed bervariasi. Ada yang B, 1, ½, ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000, dst. Mulai dari ½ sampai 1/1000 biasanya hanya disebut angka-angka dibawah saja. Artinya 100 = 1/100 dan 2 artinya ½ detik. Namun jika angka 2 itu berwarna, maka artinya adalah 2 detik.
Sedangkan B artinya bulb, yaitu jika tombol ditekan maka shutter membuka, dan ketika tombol dilepaskan maka shutter menutup.
Yang perlu diingat adalah, semakin lama kecepatan shutter, jumlah cahaya yang masuk akan semakin banyak. Semakin besar angkanya, maka kecepatan shutter akan semakin tinggi(shutter akan semakin cepat membuka dan menutup).
- Speed cepat
Speed cepat kita gunakan untuk memotret benda yang bergerak. Semakin cepat pergerakan benda tersebut, maka semakin besar angka speed shutter yang kita butuhkan.
- Speed lambat
Jika benda yang bergerak cepat dipotret dengan speed shutter rendah, maka hasilnya ialah gambar akan tampak kabur, seakan-akan disapu, namun latar belakangnya jelas. Efek ini kadang-kadang bagus dan menimbulkan sense of motion dari benda yang dipotret.
Cara lain adalah dengan menggerakkan kamera ke arah gerak objek (panning) bertepatan dengan melepas tombol. Hasil gambarnya ialah latar belakang kabur, tetapi gambar subjek jelas. Seberapa jelas atau kaburnya subjek tergantung pada cepat atau lambatnya gerakan panning. Jika gerakannya bersama-sama dengan gerakan subjek, maka gambar yang dihasilkan jelas. Sebaliknya jika kamera lebih cepat atau lebih lambat dari gerakan subjek, maka hasilnya akan blur (kabur).
Diafragma
Diafragma atau aperture (atau sering disebut bukaan) berfungsi untuk mengatur jumlah volume cahaya yang masuk. Alat ini biasanya terdapat di belakang lensa. Terdiri dari 5-8 lempengan logam yang tersusun dan dapat membuka lebih lebar atau lebih sempit.
diafragma pada lensa |
bukaan diafragma |
Penulisan angka diafragma biasanya adalah f/2, f/2.8, f/4, f/5.6, f/8, f/11, dan f/16, dst. Semakin kecil angka diafragma, maka bukaan yang dihasilkan akan semakin lebar sehingga cahaya yang masuk semakin banyak.
- Bukaan besar
Bukaan diafragma yang besar digunakan untuk menghasilkan foto dengan subjek yang tajam dengan latar belakang blur.
- Bukaan kecil
Bukaan kecil akan menghasilkan gambar yang tajam mulai dari foreground hingga background. Bukaan kecil biasanya digunakan dalam pemotertan landscape yang memang membutuhkan detail dan ketajaman di selurh bagian foto.
Depth of Field
Depth of field adalah jumlah jarak antara subjek yang paling dekat dan yang paling jauh yang dapat muncul di fokus tajam sebuah foto. Misalnya, jika kita memotret pohon-pohon yang berdiri bersaf-saf, maka yang akan tampak pada foto yang telah dicetak adalah beberapa pohon di depan tampak jelas kemudian makin ke belakang makin kabur.
Depth of field sangat tergantung pada:
- Diafragma. Semakin kecil bukaan diafragma, semakin besar depth of field yang dihasilkan. Bukaan penuh akan menghasilkan depth of field yang sangat dangkal.
- Jarak fokus lensa (focal length). Semakin panjang focal length, semakin sempit depth of field. Maka dari itu, lensa wide angle memiliki depth of field yang sangat besar.
- Jarak pemotretan. Semakin dekat jaraknya, semakin sempit depth of field yang dihasilkan.
Fungsi depth of field adalah untuk mengaburkan latar belakang jika latar tersebut tidak sesuai dengan subjeknya.
Pencahayaan
Pencahayaan atau exposure adalah kuantitas cahaya yang diperbolehkan masuk; intensitas (diatur oleh bukaan lensa) dan durasi (diatur oleh shutter speed) cahaya yang masuk dan mengenai film.
Film dengan ASA tinggi, memerlukan sedikit cahaya untuk menghasilkan gambar yang jelas. Sebaliknya, film dengan ASA rendah memerlukan banyak cahaya untuk menghasilkan gambar yang jelas.
Exposure diukur oleh alat yang disebut light-meter. Jika light-meter menunjukkan kekurangan cahaya, maka kita bisa memperkecil bukaan diafragma atau memperlambat shutter speed. Sebaliknya, jika light-meter menunjukkan kelebihan cahaya maka kita bisa memperbesar bukaan diafragma atau mempercepat shutter speed.
- Overexposure
Merupakan keadaan dimana jumlah cahaya yang masuk terlalu banyak. Gambar yang dihasilkan akan terlalu terang.
- Underexposure
Merupakan keadaan dimana jumlah cahaya yang masuk terlalu sedikit. Keadaan ini menghasilkan gambar yang gelap.
Perkembangan Kamera SLR
Kamera DSLR (Digital Single Lens Reflex)
Pada prinsipnya, kamera SLR dan DSLR memiliki cara kerja dan komponen yang sama. Yang membedakan adalah penggunaan film. Kamera SLR menggunakan film sebagai medium penangkap, sedangkan kamera DSLR tidak lagi menggunakan film. Sebagai gantinya, kamera DSLR menggunakan sensor CCD atau CMOS.
Pada kamera film, maka kualitas lensa sangat menentukan kualitas gambar. Pada kamera digital yang menentukan kualitas gambar adalah:
- Yang pertama, sensor kamera dimana semakin baik kualitas sensor kamera, maka dimungkinkan semakin baik pula kualitas gambar
- Yang kedua, prosesor dimana biasanya setiap merek kamera memiliki sistem pemrosesan pribadi yang berbeda dengan merek lainnya, pemrosesan yang buruk akan mengakibatkan kualitas gambar yang tidak maksimal, walaupun sensornya berkualitas baik
- Yang ketiga, lensa dimana yang berkualitas baik tentu diperlukan, tetapi tidak sepenting seperti pada kamera film, karena banyak dari kekurangan kualitas lensa telah dapat diperbaiki oleh prosesor, sehingga perbedaan kualitas yang sedikit antara lensa yang satu dengan yang lain akan menghasilkan gambar yang relatif sama kualitasnya, misalnya f1.4 dengan f/1.8
by arichawer · 0
Injection molding adalah metode pembentukan material termoplastik dimana material yang meleleh karena pemanasan diinjeksikan oleh plunger ke dalam cetakan yang didinginkan oleh air sehingga mengeras.
Meskipun banyak variasi dari proses dasar ini, 90 persen injection molding adalah memproses material termoplastik. Injection molding mengambil porsi sepertiga dari keseluruhan resin yang dikonsumsi dalam pemrosesan termoplastik. Sekarang ini bisa dipastikan bahwa setiap kantor, kendaraan, rumah, pabrik terdapat barang-barang dari plastik yang dibuat dengan cara injection molding, misalnya pesawat telepon, printer, keyboard, mouse, rumah lampu mobil ,dashboard, reflektor, roda gigi, helm, televisi, sisir, roda furnitur, telepon seluler, dan masih banyak lagi yang lain.
Mesin injection molding tercatat telah dipatenkan pertama kali pada tahun 1872 di Amerika Serikat untuk memproses celluloid. Berikutnya pada tahun 1920-an di Jerman mulai dikembangkan mesin injection molding namun masih dioperasikan secara manual dimana pencekaman mold masih menggunakan tuas. Tahun 1930-an ketika berbagai macam resin tersedia dikembangkan mesin injection molding yang dioperasikan secara hidraulik. Pada era ini kebanyakan mesin injection moldingnya masih bertipe single stage plunger. Pada tahun 1946 James Hendry membuat mesin injection molding tipe single-stage reciprocating screw yang pertama. Mulai tahun 1950-an relay dan timer mulai digunakan untuk pengontrolan proses injeksi nya.
Termoplastik dalam bentuk butiran atau bubuk ditampung dalam sebuah hopper kemudian turun ke dalam barrel secara otomatis (karena gaya gravitasi) dimana ia dilelehkan oleh pemanas yang terdapat di dinding barrel dan oleh gesekan akibat perputaran sekrup injeksi. Plastik yang sudah meleleh diinjeksikan oleh sekrup injeksi (yang juga berfungsi sebagai plunger) melalui nozzle ke dalam cetakan yang didinginkan oleh air. Produk yang sudah dingin dan mengeras dikeluarkan dari cetakan oleh pendorong hidraulik yang tertanam dalam rumah cetakan selanjutnya diambil oleh manusia atau menggunakan robot. Pada saat proses pendinginan produk secara bersamaan di dalam barrel terjadi proses pelelehan plastik sehingga begitu produk dikeluarkan dari cetakan dan cetakan menutup, plastik leleh bisa langsung diinjeksikan.
Molding area diagram
Jendela proses atau juga disebut Molding Area Diagram adalah sebuah indikator seberapa jauh kita bisa memvariasikan proses dan masih bisa membuat produk yang memenuhi syarat. Idealnya jendela proses cukup lebar sehingga bisa mengakomodasi variasi alami yang terjadi selama proses injeksi. Jika jendela proses terlalu sempit maka ada risiko menghasilkan produk yang cacat akibat variasi proses injeksi berada di luar jendela. Jendela proses berbeda-beda untuk tiap resin karena masing-masing resin memiliki titik leleh (temperatur transisi gelas, Tg) yang berbeda-beda.
Jika temperatur proses terlalu rendah maka ada kemungkinan material tidak meleleh dan jika meleleh maka viskositasnya sangat tinggi sehingga memerlukan tekanan injeksi yang sangat tinggi. Jika tekanan injeksi terlalu tinggi maka akan menimbulkan flash atau burr pada garis pemisah cetakan akibat gaya pencekaman lebih kecili dari tekanan injeksi. Dan jika temperatur proses terlalu tinggi maka material akan mengalami kerusakan atau terbakar.
Gas Assisted Injection Molding melibatkan penggunaan gas bertekanan tinggi dalam proses injeksi. Ketika mold baru terisi sebagian material plastik leleh (1), gas bertekanan tinggi diinjeksikan. Gas ini akan mendorong plastik leleh ke arah dinding-dinding cetakan (2). Tekanan gas tetap dipertahankan untuk memberikan tekanan pemadatan sementara produk mengalami pendinginan (3). Gas yang biasa dipakai adalah gas Nitrogen karena bersifat inert.
Perbedaan tekanan di dalam mold
Keuntungan:
Berdasarkan tonase - Mesin injection molding dibedakan berdasarkan besarnya gaya pencekaman maksimum yang bisa diberikan. Kisarannya mulai dari 5 ton untuk menghasilkan produk seberat 10 gram sampai dengan 5000 ton untuk menghasilkan produk seberat 50 kilogram
Meskipun banyak variasi dari proses dasar ini, 90 persen injection molding adalah memproses material termoplastik. Injection molding mengambil porsi sepertiga dari keseluruhan resin yang dikonsumsi dalam pemrosesan termoplastik. Sekarang ini bisa dipastikan bahwa setiap kantor, kendaraan, rumah, pabrik terdapat barang-barang dari plastik yang dibuat dengan cara injection molding, misalnya pesawat telepon, printer, keyboard, mouse, rumah lampu mobil ,dashboard, reflektor, roda gigi, helm, televisi, sisir, roda furnitur, telepon seluler, dan masih banyak lagi yang lain.
Sejarah
Mesin injection molding tercatat telah dipatenkan pertama kali pada tahun 1872 di Amerika Serikat untuk memproses celluloid. Berikutnya pada tahun 1920-an di Jerman mulai dikembangkan mesin injection molding namun masih dioperasikan secara manual dimana pencekaman mold masih menggunakan tuas. Tahun 1930-an ketika berbagai macam resin tersedia dikembangkan mesin injection molding yang dioperasikan secara hidraulik. Pada era ini kebanyakan mesin injection moldingnya masih bertipe single stage plunger. Pada tahun 1946 James Hendry membuat mesin injection molding tipe single-stage reciprocating screw yang pertama. Mulai tahun 1950-an relay dan timer mulai digunakan untuk pengontrolan proses injeksi nya.
Proses
Jendela proses
Molding area diagram
Jendela proses atau juga disebut Molding Area Diagram adalah sebuah indikator seberapa jauh kita bisa memvariasikan proses dan masih bisa membuat produk yang memenuhi syarat. Idealnya jendela proses cukup lebar sehingga bisa mengakomodasi variasi alami yang terjadi selama proses injeksi. Jika jendela proses terlalu sempit maka ada risiko menghasilkan produk yang cacat akibat variasi proses injeksi berada di luar jendela. Jendela proses berbeda-beda untuk tiap resin karena masing-masing resin memiliki titik leleh (temperatur transisi gelas, Tg) yang berbeda-beda.
Jika temperatur proses terlalu rendah maka ada kemungkinan material tidak meleleh dan jika meleleh maka viskositasnya sangat tinggi sehingga memerlukan tekanan injeksi yang sangat tinggi. Jika tekanan injeksi terlalu tinggi maka akan menimbulkan flash atau burr pada garis pemisah cetakan akibat gaya pencekaman lebih kecili dari tekanan injeksi. Dan jika temperatur proses terlalu tinggi maka material akan mengalami kerusakan atau terbakar.
Gas Assisted Injection Molding
Gas Assisted Injection Molding melibatkan penggunaan gas bertekanan tinggi dalam proses injeksi. Ketika mold baru terisi sebagian material plastik leleh (1), gas bertekanan tinggi diinjeksikan. Gas ini akan mendorong plastik leleh ke arah dinding-dinding cetakan (2). Tekanan gas tetap dipertahankan untuk memberikan tekanan pemadatan sementara produk mengalami pendinginan (3). Gas yang biasa dipakai adalah gas Nitrogen karena bersifat inert.
Perbedaan tekanan di dalam mold
Keuntungan:
- Leluasa dalam mendesain bentuk-bentuk produk berongga, berdinding tipis ataupun tebal dan berbentuk batang atau pipa
- Kekakuan produk lebih tinggi akibat adanya ruang kosong (momen inersia polar lebih tinggi)
- Memerlukan jumlah gate lebih sedikit sehingga mengurangi weldline
- Tidak ada cacat sinkmark pada produk-produk yang tebal
- Tekanan injeksi dan pemadatan yang lebih rendah
- Distribusi tekanan pemadatan lebih merata
- Siklus injeksi lebih cepat akibat waktu pendinginan yang lebih singkat.
- Produk yang lebih ringan
Mesin injection molding
Komponen utama- Unit injeksi - bagian dari mesin injection molding yang berfungsi untuk melelehkan material plastik, terdiri dari hopper, barrel dan screw.
- Mold - bagian dari mesin injection molding dimana plastik leleh dicetak dan didinginkan
Jenis-jenis mesin injection molding
Berdasarkan metode pencekaman cetakan
- pencekam toggle
- pencekam hidraulik
- single-stage plunger
- two-stage screw-plunger
- single-stage reciprocating-screw
Berdasarkan tonase - Mesin injection molding dibedakan berdasarkan besarnya gaya pencekaman maksimum yang bisa diberikan. Kisarannya mulai dari 5 ton untuk menghasilkan produk seberat 10 gram sampai dengan 5000 ton untuk menghasilkan produk seberat 50 kilogram
by arichawer · 0
Subscribe to:
Posts (Atom)